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This paper deals with steady inviscid supersonic flow round a wedge, on 
the surface of which there are surface currents which flow perpendicular- 
ly to the air flow, the square of the intensity of these currents being 
inversely proportional, to the distance from the vertex of the wedge. 
The problem is posed in the same manner as in Ed. The gas is assumed to 
be nonconducting in front of the shock wave and it is finitely conduct- 
ing in the region of the disturbed current, whilst the transition through 
the shock wave is described by the same relationships as those which 
would hold without the presence of the magnetic field. Within these 
assumptions there does exist a self-similar solution of the magnetohydro- 
dynamic equations which describes flow close to the vertex of the wedge 

and, it is indeed a generalization of 
the well known accurate solution of the 
problem of flow of a supersonic stream 
round a wedge in the absence of a mag- 
netic field. 

For a given magnetic field intensity 
there exist two solutions I of the & 

boundary value problem obtained from Fig. 1. 
the appropriate system of three ordi- 
nary differential equations. When the 
intensity of the magnetic field tends to zero these solutions go to the 
well known nonmagnetic solutions to the problem of flow round a wedge 
with both weak and strong shock and the velocity of the gas on the wedge 
surface is not zero. Additionally, there exist infinite numbers of soln- 
tions TI for which the shock angle takes any value within the interval 
between the values obtained from solution I. 

Solution IX is characterized by zero velocity on the wedge surface 
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and it has no analog in normal hydrodynamics. The requirement for a cou- 
tinuous relationship between the solution and the intensity of the mag- 
netic field leads one to the conclusion that in practice the solution of 

type I wltich corresponds to weak shock will be realized. It is demon- 
strated for this solution that there is a continuous transition from flow 
with an attached shock wave in the absence of a field to flow with a de- 
tached shock wave with a rather strong field. 

Some examples are given which have been worked out on the high speed 

M-20 computer. 

I, Consider a plain inviscid supersonic stream flowing steadily over 

the top surface of a wedge which makes an angle a with the direction of 

the undisturbed stream velocity vector U,. Cartesian coordinates ny are 

directed 

It .is 

__ 
as shown in Fig. 1. 

assumed that surface currents whose density is given by 

j =L- _ Ax--% 

where A is a dimensional constant, pass normally to the plane of flow on 

the surface. The wedge has sides of length L. 

The components hz and hy of the magnetic field vector h induced by the 
given distribution j are given by the relations 

(1.1) 

(c is the velocity of light in vacuum. 

Ihe conductivity u is assumed to be zero in front of the shock wave, 

whilst behind the shock wave the gas conductivity depends on thermal 

ionization and it is finite so that the magnetic Reynolds number is given 

by R, = 4tral&L/c2 GIL. The problem is posed in the same way as in fl], 

(the difference between the two cases involves the choice of magnetic 

field which is assumed in [I] to be constant and directed normally to 

the surface). The solution is constructed for flows with an attached 

shock wave so that the stream along the upper surface of the wedge may 
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be considered to be independent of that flowing past the lower surface. 
Induced magnetic fields which could cause these flow fields to interact, 
may be neglected, as will be seen from what follows. 

The solution is constructed in the neighborhood of the vertex of the 
wedge in the region (x2 + y*)‘/2 < 1 << L ,within which, from Fquations 

(1.1) to (1.4) (with relative error of the order of 4 (I/L), we have, for 
the given magnetic field 

h = @$f(q), x h,= %,(,) (1.5) 

Now represent the resultant magnetic field vector in the form h + h,’ 
where h’ is the induced magnetic field. For h’, from the expression for 
Ohm’s law, taking into consideration the absence of electric field, we 
arrive at the relationship 

rot h’ = R, V x (h + h’) 

where V is the velocity vector made dimensionless by division through (1,. 
x and y are referred to L. If we use Newton potentials it is possible to 
show that h’ is everywhere finite, 
stream is of order BP/cd L. 

and in the region of the disturbed 
‘I’% us within the region we are discussing 

close to the vertex of the wedge the ratio h’/h of the induced and 
applied field is of order \J (Z/L). It follows that 
L and the induced magnetic field may be neglected 

J (Z/L). 

l%e equations of ma~etohydrodyn~ics behind a 
dimensional variables (for simplicity we assume a 
written 

both the finiteness of 
with an error of order 

shock wave in 
perfect gas) may be 

In 
along 

Z$+t: = 3 (vh, - Uh,) 

a0 a$-+uZ+$S =+h,-oh,) (1.6) 

!g. + ag = 0, uT +5-f- = ufy[l+(x_~)~f2] 
00 

these expressions u and v are components of the velocity vector 
the x, y axes respectively, p is the density, p the pressure, o 

the specific electrical conductivity, K the adiabatic index, M, the Mach 
number of the undisturbed stream.’ It will be assumed that u is constant 
over the whole region of the undisturbed stream and Mm is infinite. It 
should be noted that the assumptions (o = const, M, = m, for a perfect 
gas) are not essential for the existence of a self-similar solution and 
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are only made to simplify the investigation. 

Assuming that the magnetic field is given by Equations (1.5) whilst 
the boundary conditions for the hydrodynamic quantities reduce to the 
condition of impermeability on the body, i.e. no flow through the sur- 
face, and to the usual nonmagnetic relationships on the shock wave [l], 
and making use of dimensional analysis [2], it is easy to convince one- 
self of the existence of a self-similar solution of Equation (1.6) in 
which the velocity vector, pressure and density are constant along rays 
which pass through the vertex of the wedge, i.e. they depend on n = 
tan 9 = y/x, where ‘p is the angle of inclination of a ray to the x-axis. 
The angle 0, of an oblique shock which emanates from the vertex of the 
wedge (Fig. 1) is determined in the process of the solution. 

Now eliminate the pressure from Fquation (1.6) using the foregoing 
equation and relate the velocity and density to their values in the un- 
disturbed stream, retaining for the nondi~nsional values the same nota- 
tions as fox the dimensional ones. The result of going over to the inde- 
pendent variable n is to arrive at a system of three ordinary differ- 
ential equations (strokes denote differentiation with respect to q) 

2a A2n2 Q=- 
4&p, 

where f(q) and cptr\) are determined according to (1.4), the intensity of 
the magnetic field is represented by the dimensionless parameter q > 0, 
where p,,, is the density of the undisturbed stream. 

It should be observed that there exists a similar self-similar solu- 
tion for the ease of an ariallg symmetric flow past a cone with adeuthal 
surface currents whose densities (as in the plane case) are inversels 
proportional to the square root of the distance from the vertex of the 

cone. 

2. The system (1.7) is studied in the velocity hodograph where the 
motion of a representative point V(u, u) is followed as n changes. The 



One self-similar solution to the magnetohydrodynamic equations 1251 

solution is defined within a circle C, of unit radius the square of the 

velocity of sound being a* > 0. 

On the surface uu families (1.8) of curves 13, y, A, P,, P,, P, are 

given, each of which depends on the parameter 7. Were and below the 
curves j3, y, etc. denote curves which are obtained from the equations 
(3 = 0, y = 0 etc.) On curves I3 and A the derivatives u’, v’ and p’ go to 

Fig. 2. 

infinity, i.e. these lines become singular. 
On the rest of the curves the derivatives 

I 
u , v’ and p’ vanish according to (1.7). 
These curves are depicted in Fig. :! where 
they are represented for a fixed value of 
T-I. The straight lines (3, y and P, go 
through the origin (the straight line P3) 
has not been taken to C, so as not to con- 
fuse the drawing). Their angular coeffi- 
cients are respectively kp, ky, k, and are 
expressed in the following way 

The straight lines 13 and y have a 
simple physical explanation; the line I.3 
divides the regions where the angle of 

inclination of the velocity vector with the n-axis is less (p < 0) and 
greater (p > 0) than the angle of inclination Q of a given ray in the 
physical plane. Similarly y divides the region where the angle between 
the velocity vector and the n-axis is less fy < 0) and greater (y > 0) 
than the angle between the magnetic field vector (1.5) and the x-axis. 
%e curves A and P, are ellipses, P, is a hyperbola. The curve A is well 
known from Busemann’s theory of characteristics (see, for instance, [3] 1; 
its major and minor axes are equal respectively to unity and to (K - 1)“’ 
/(K + l)‘? 

In this problem the major axis of ellipse A is directed along line p, 
i.e. it makes an angle 9 with the u-axis equal to the angle between the 
corresponding ray in the physical plane and the x-axis. If point V, 
always located below the straight line 13, as will be seen later, lies 
within, on or outside the ellipse A, it shows that the angle of inclina- 
tion of the characteristic of the first family with the x-axis is 
respectively greater than, equal to or less than ‘p. This follows from the 
circumstance that the characteristic equation in the physical plane 
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obtained from (1.6) has the same form as in normal hydrodynamics. 

On the ellipse P2 when q changes from zero to 0) the msjor axis turns 
counter-clockwise and decreases from ZK/(~U + 1)"' to 1 whilst the minor 
axis increases from 0 to (K - 1)“2/(~ + 1)'/2. When q _ a the ellipse 
P, coincides with A. The ellipse P2 intersects C, twice; on line p and 
on the ray whose angular coefficient is k,, 

The hyperbola P, intersects the circle C, on line p and on a ray whose 
angular coefficient is k, where, 

When q = 0 the vertex of the hyperbola lies at the point u = 1, v = 0 
whilst its axis coincides with the u-axis 

G-3) 
When q increases the axis of the hyperbola moves counter-clockwise 

whilst the vertex approaches the origin. \%en q - = the hyperbola P, 
decays into a pair of straight lines, u = 0, u = KU/(K - 1). On Fig. 3 
p, P, and P, are shown for q = 0.2 (lightly dotted), q = 1 (heavy dots) 
snd q = 10 (dots and dashes).* Here the envelope of hyperbolas P, is also 

shown (line C on Figs. 2 and 3). It 
can be shown that the strophoid** 
(circle C, in Fig. 31, constructed for 
any positive value of the angle a be- 
tween the undisturbed velocity and the 
x-axis and giving the condition of the 
stream behind the shock wave, always 
lies within the envelope and never 
intersects it when the angle 0, varies 
(Fig. 1). The only possible exception 
is point A (Fig. 3) in which when 
a = 0 the strophoid touches the 

envelope from within. The equations of 

envelope and of strophoid (when a = 0) 
near point A may be written down re- 
spectively thus 

* Both here and below all constructions and calculations relate to 

K = 1.4. 

** It is known that when M, = m the strophoid decays into a circle. 
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u=1-~v~+Q(v4) 

u=l x4-f - 2 79 + 0 (v4) 
(2.4) 

3. Quantities which lie immediately behind the shock wave will be de- 
noted by suffix 0 everywhere. As evidently behind the wave the angle be- 

tween the velocity vector and the x-axis is less than B0 we have /3, < 0, 

i.e. the representative point V0 immediately behind the wave lies below 

the straight line p. This point moreover lies within A, for with super- 

sonic velocity behind the wave the angle of inclination of the character- 

istic of the first family exceeds 8, and with subsonic velocity V it 

always lies within the Busemann ellipse. Thus behind the shock wave the 

point V. may lie in one of six regions (Fig. 2). VJithin each of the 
regions the derivative dv/du along the integral curve (1.7) does not 

change sign. 'Ihe direction of motion of point Vwith decrease in n, i.e. 

with motion of the shock wave to the body is shown in Fig. 2 by means of 

an arrow, Note that P, is not a boundary of the region. Besides in 

accordance with Section 2, in region 4 point V, lies outside the hyper- 
bola in,. We will now prove several theorems about the motion of V. 

a) From Equations (1.7) and (1.8) for the quantities y along the 

integral curve we have on line y 

under the assumption v > 0 and q > 0. It follows from this that in the 

case of motion from shock wave to body, i.e. decrease in TJ, the quantity 

y cannot change sign from positive to negative (the transition in the 

reverse direction may take place). 

b) The integral curve does not reach line p for n > 0. We are going 

to give the proof by proving the impossibility of its opposite. Suppose 

that at some point (we will characterize it by suffix *) the quantity p 

becomes zero. We will write down the auxiliary equations which follow 

from Equations (1.71, and (1.8): 

(3.2) 

We choose on the given integral curve in the neighborhood of point n 

some other point which we will denote by . It follows from Section 2 * 
that over the interval q,q,, the quantitiz*s P,, 

where and they do not change sign. 
P,, P, do not vanish any- 
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From the first equation (3.2) we have for p 

(33) 

where the integral on the right-hand side of (3.3) is already known to 
converge, i.e. p is a finite quantity within the closed interval ~,TI,. 
Furthermore, from the second equation (3.2) we have 

(3.4) 

If we let u tend to u* we arrive at a contradiction; the left-hand 
side of Equation (3.4) remains finite whilst the right-hand side grows 
without limit for 8, = 0, and this proves the theorem. 

c) The integral curve cannot intersect the line P2 when point Vmoves 

from within the ellipse, .%ppose on the contrary, that at point A there 
has been some intersection of the integral curve with ellipse P2 fFig.2). 
As the angular coefficient of the tangent to JJ2 is positive in the given 

region, then along the integral curve dv/du > 0 at point A. On the other 
hand from the first and second equations (1.7) it follows that dv/du = 0 

at this point. The contradiction -in fact confirms the statement made 
above. 

d) In region 4 the integral curve does not intersect the line P,. 
Such an intersection evidently could take place at high enough values 
q when the vertex of the hyperbolas is close to the origin. Rre proof 
similar to the one above and rests on the first two equations (1.7). 

e) The density p differs from zero and infinity everywhere, except 

the two points of intersection of lines P, and Pz. ‘Ihis follows from 

of 
is 

at 

Eq,~ation-{3.3) because the expression in-the integral sign on the right- 
hand sign is finite. If the integral curve intersects line P, at a point 

within the interval gn,,, then instead of (3.31 in the neighborhood of 

this point we make use of the similar equation 

? Ps tn$ = \ xdv (3.5) 
r* 

fl** 

f) The ellipse A is the limiting line for the solutions (1.7). Actu- 
ally suppose at some point represented by * lying at the boundary of 
regions 1 or 2 (Fig. 2)) the integral curve intersects the line A. In 
the neighborhood of this point we have A = (u-uu*)o, where O=O(U, u,r)l, 

O* > 0. Ihe first equation (1.71 can be written thus 
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Ihe solution (3.6) in the neighborhood of the singular point has the 

form 

I--.I=V252.(rl -q.) 

i.e. it cannot be continued into the region tl < q,. 

4. Consider now the behavior of the integral curves, when V lies in 
region 4. According to the theorems (Section 3, a, b, c) when q > 0 the 
integral curve cannot go outside region 4. When TJ decreases the component 
velocities u and v decrease monotonically. It will be seen (Section 7) 
that when q tends to zero when region 4 decays into a section of the u- 
axis it is not possible to obtain a solution for which the representative 

point tends to some point with 
coordinates v = 0, u = u1 f 0 
within region 4. ‘l’hus in region 
4 one should search for a solu- 
tion of (1.7) in which lim u=O 

and lim v = 0 for ‘1 - 0. Write 
down now the system (1.7) for q 
close to zero in a simplified 
form expanding f(q) and ~(‘1) in 
series, and retaining the first 
terms, bearing in mind also how 
small u and II are. 

We obtain 

11’ =- 9 (v - 0.5 qu) q 

P (v - w 
v’ = Tp’, pl =o (4.1) 

Fig. 4. 

Introducing p as an unknown function, we obtain the equations 

@f-J” +-g p’q” - 6#lq = 0, u= - p’, u = p + qu 

P = Pl = const, 8=+ (4.2) 

The first equation (4.2) for p allows for a group transformation and 
can be reduced to an equation of the first order in the quantities 

x = WI3 t Y = Pv12. 
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f& ~wY--34+2w d in q 2 
dr= x(3%---y) * -XT-= Y-32 

(4.3j 

Equation f4.3), whose integral curves are shown in Fig. 4 (the arraws 
show the directions of increasing q), has two singular points; the point 
0 (X = 0, y = 0, saddle and node running together) and A (x = - E/12, 

Y = - S/4, i.e, focus). Region 4 on this figure lies in the third 
quadrant within the angle made by the straight lines Y = 2x (correspond- 
ing to our approximation y = 0) and x = 0 (p = 0). In accordance with 
the theorems proved, the integral curves which enter this region, tend 
toward point A. The latter gives an analytical solution (4.3) which 
satisfies the condition of impermeability (i.e. not flowing through) 

To find the other solutions close to the singular point we transform 
the first equation (4.31, assuming x = - B/12 + 5, y = - B/4 + <, where 
c and 5 are small quantities. If we integrate the equations so obtained 
we arrive at 

From (4.5) and from the second equation (4.3) we obtain (C, and C, 
are arbitrary constants) 

If use is made of (4.2) and (4.6)) expressions for u, u, p can be 
found which, if substituted into the basic equations (1.71, show that 

solution (4.6) of Equation (4.1) really does give the main terms of the 
asymptotic expansions of the solutions near the singularities. ‘Ihe 
following terms of the expansion may be obtained from (1.7). When C, = 0, 
when solution (4.6) transforms to (4.4j, it is possible to arrive at a 

solution in power series form 

(4.7) 

In a similar manner it is possible to obtain solutions for C, not 
equal to 0 when they are not analytic functions, when q = 0. 
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Thus the general solution in region 4 which satisfies the condition 

of impermeability for n = 0 depends on 

Fig. 5. 

the arbitrary constant quantities 

pr > 0, C, and C,. For this solu- 
tion not only v but also u vanish 
on the surface of the body. Making 
use of two conditions on a shock 
wave which connect the three un- 
known functions u, v, p, it is 
possible to exclude the depend- 
ence on two parameters, and so 
represent the solution as a set 

of relations in terms of one para- 
meter which may for instance be 
taken to be the angle of inclina- 
tion of the shock wave B0 * with 
q fixed or q with 8, fixed. tTnder 
these conditions q may vary be- 
tween 0 and SJ (Section 5 deals 
with the case where q = ~0, when 

solution (4.7) is inapplicable). Thus the solution imposed by the bound- 
ary problem in region 4 turns out to be positive or negative (multi- 
signed). On Fig. 5 a calculated example is shown for the case a = 0, 
0, = #So, 4 = 20 and q = 30. 

The solution which corresponds to zero velocity at the wail will be 
called solution II. 

5. Evidently when V lies in region 3 (Fig. 2), when n is decreased, a 
transition takes place 3 - 4 - 0 (this will denote a transition from one 
region to another and the tendency of the representative point to 
approach the origin for n -. 01, i.e. the solution in region 3 is also of 
single sign. 

6. To complete the investigation of the solutions in regions 4 and 3 

and for what follows it is essential to know the behavior of the integral 
curves in the limiting case rj = a. To do this we transforms (1.7) into 
the following form 

dv PO 
-z-=-p 

dlnp Ps 
du--“E’ 

dg j&J 
du = gyPI (6.1) 

If we make q tend to m and assume P, f 0 we can identify two cases. 

1 Obviously e0 is such that V0 lies within region 4. 
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fa) Case for y # 0 

(b) Case for y = 0. Substituting into the first and second of F+a- 
tions (6.1) n = 2uv/(u2 - v*) from condition y = 0 and making use of 
(1.4) and (1.8) we arrive at 

do 
du = a@ 

2uvfl---x(x - If-’ (23 + vZ)f 
- v” -f- (d + a*) [(x + 1) (x - 1)-l Ita - u*j (6.3) 

dlnp 
-XC-=--- 

2u (u2 + 9) 
(% - 1) {US- v* + (US + @) [(x + i) (x - 1)-l Y* - uy) (6.4) 

In cases (a) and (b) the equations in the hodograph plane are closed. 
The integral curves for y # 0 are described by the first equation (6.2) 

up to the point when the integral curve does not intersect line y = 0, 
after which (6.3) is used. If such an intersection does not take place 
(then the integral curve intersects line A, which indicates the lack of 
a solution with the accepted initial conditions (Section 3, e). When 
undergoing the transitions 4 - 0 or 3 -t 4 -4 0, the representative point 
V after the intersection between the integral curve and line y, moves 
along the “upper edge” of the cut y = 0, tending to zero at the origin 
with decreasing ~j, in the neigh~rh~d of the origin the main terms of 
the expansion of solution (6.3) and (6.4) take the following form 

u = Au2, P =p1(+&), 7 = ZAu, A = const (6.5) 

distinct from the corresponding solution (4.7) with finite q. 

‘7, Consider now the solution in region 2, For small q, wheu point V 
hardly moves, when n decreases and the nei~or~d of line a is not yet 
approached, the following transitions take place: 2 -, 5 - 4 - 0 or 

2-3-4-O. 

According to the analysis, the point of the intersection S between 

lines y and A is a moving node for Equation (1.7). With fixed q and de- 
creasing n the representative point moves away from S; if q is large 
enough, the integral curve in region 2 intersects with line b, i.e. the 
solution evinces a limiting line. If q decreases the integral curve 

intersects line A for smaller values of n. 

There exists a value q = q, when the integral curve wholly lies in 

region 2 whilst with q tending to zero, v - 0 and u - ul f 0 (for tl < If 
the solution IX is obtained). Now examine the solutiou when the integra f 

curve approaches the u-axis for n - 0. To do this we simplify Equation 
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(1.7) making the ass~ptian that v and q are small quantities. As a re- 

sult we arrive at 

u’ Z - 
P(C - 0.5 ?pl) q 

P (L‘ - w) 
(7.1) 

1;’ = - Q (1. - 0.5 gu1) 

p (z--- T)ur) (1 - u1*1 I( 1 $-s+l - - u12 &iv’ 

X-i ) I,2 + 2 (3x-k 1) ~- u,q--- 
x - 1 X-1 I 

(7.2) 

pl = 2q Iv - 0.5 qu,) [(is + 1) qu1 -i- 2xuf 

fx - 1) (v - TJUI) fl - @) (7.3) 

Equations (7.1) to (7.31 have an asymptotic solution when n tends to 
zero and they satisfy the conditions 

(Iv L 3xJ-1 
T= 

tip1 (I- ?A& 
_-_!.- u1* - 11 
x - 1 3 

r n(V_!-4\r,.n% 1 

A solution in region 2 can take 
place for u,~ > (K - 1)/(31< + 11, 
when the iniegral curves approach the 
u-axis for q - 0 from above, and this 
means that 2 - u+. When ur2 < (K - l)/ 

(3~ + 1) the integral curves can approach the u-axis for TJ - 0 from below 
from region 6 and this will be denoted by 6 - u_. 

In order to investigate the singularity on the u-axis put p = pI in 

Equation (7.21. Tne integral curves of this equation in the t19 plane are 
shown in Fig. 6. In this figure a corresponds to the case u1 2 > (K - l>/ 
(3~ + 1) and 6b to the case for ul’ < (K - 1)/(31( + 1). Curves C corre- 
spond to solution (7.4) which depends on two parameters. If 1 > uI ) 
\1 [(K - l>/~l in Fig. 6, a line P, lies* above y and curve C separates 
the integral curves 2 - 3 - 4 * 0, which go above C from the curves 2 - 1. 
If \1 [(K - II/K] > u1 > 4 [f~ - 1)/(3~ + 111 line P, lies below y and curve 
C separates the curves 2 - 5 - 4 - 0 from the curves 2 - 1. In a similar 
manner in Fig. 66,** the curve C separates the curve 6 -4 1 from the 

~~ 
+ In this approximation with coordinates q the line P, and also y will 

be straight. 

** Using other coordinates curve C is shown on Fig. 4 for the case 
1 2 -ul =I. 
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curves 6 -+ 5 - 4 -+ 0. The singular point on the u-axis therefore is 
similar to a saddle and curves C enter it from definite directions. 

If we make use of Fqations (1.7) solution (?,4) can be made more 
accurate by finding the following terms*in the expansion in series in q. 
For instance the expression for v in u1 = (K - 1)/(3~ + 1) takes the 
following forms: 

(7.5) 

Owing to the fact that solution (7.4) depends on two parameters, 
whilst on the shock wave there are two conditions which connect U, vr pI 
in region 2 to each value of 4 there corresponds one unique solution I 
which satisfies the condition of impermeability as distinct from solution 
II dealt with in Section 4. 

Vhen q, tends to zero the angle of inclination of the shock wave tends 
to its "non-magnetic" value 3,,. The representative point behind the 
shock wave lies on the u-axis and does not move when q decreases to zero, 
i.e. the solution in region 2 tends to the well known exact solution of 
the wedge probiem (weak shock solution). 

Figure 7 illustrates an example in which calculations are done for 
u = 30*, 8, = llO.3 (qO = 0.2). The quantity q = 18.056 was so chosen 

that the solution for TJ - 0 took the form (7.45. 

Solution (7.4) is valid for finite q and u1 # 1. When Q = m the con- 

ditions of i~e~ability for u1 = 1 can be satisfied. To do this it is 

necessary to see that V0 lies in 
region 2 on the “lower edge” of the 
cut y = 0. When q is reduced, point V 
will move toward the circle C, (Fig.2). 
A solution to Equations (6.3), (6.4), b 
satisfying the condition of imperme- 
ability has the following form 

Y' 

u 1--CV--i+... = 

11 = 2v (1 + cvx-x + . . .) 
P = ~v(1 + ZGW-1 + . . .) (7.6) 

c = const > 0, B = const>O 

'R&e solution (7.6) can be con- 
strueted for K 14 3. One can demon- 

Fig. 7. 

strate that; for K =1 3 the representative point behind the wave cannot be 
on the boundary of region 2 on the line y. It is not out of place to note 
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that for q = m the density (and therefore pressure) on the wedge surface 

are both zero. 

8. If we make use of the assumption that the gas in the shock wave is 
in a high state of compression [4] (this is equivalent, as is well known, 
to the assumption E = (K - l)/(~ + 1) << 11, an approximate solution can 
be constructed in region 2 for values of q where the solution with mag- 
netic field differs little from the corresponding nonmagnetic solution. 
Now if we make use of the relationships for the quantities on the shock 
wave (Fig. 1) when E << 1 

UO = 00 (1 - E) COS U- (E $ e”,) Sinu, UO= (1-Q COS CZ - (I- E) B. sina 
p. = e-1 (8.1) 

and from (7.4),we have with an error of magnitude ~~ 

e2 uaa 
e,=~una+c~~+ 

qs4 sin a ((3x + 1) cos2 a/(x - 1) - 1) 
6 co9 a 

u=cosa 1-8~2a+~(e2~n2a-q2)] 
[ 4cosa 

2, = eqvf [(3x + 1) cos2 a/(x - 1) - 11 
6 sins a 

, p=f l-E!_ 1_3__ 
II 

(8.2) 
co9 a ( e2~y a )I 

Formulas (5.21 can be applied when QE s 1, and this follows from (7.41. 

9. When point V comes into region 1, the condition of impermeability 
cannot be satisfied and no solution to the boundary value problem exists. 

10. Behavior of integral curves is now analyzed when point V, lies in 

region 5 or region 6. 

Men q is sufficiently small, when V hardly moves, when q is decreased 
a transition 5 - 4 - 0 takes place, whilst in region 6 a solution to the 
problem does not exist. ‘lhe following theorems can be proved and these 
are based on evaluations for the magnitude of dv/du for finite (1.7) and 
infinite (6.2) values of 7. 

a) If, when q = m, the integral curve emanating from some point A of 
region 5 (Fig. 8) intersects y, then for any value of q the integral 
curve will intersect y (the points of intersection are shown on Fig. 8 
by circles and they come closer’to A with decrease in 7; the symbol m re- 
lates to curve q = 03). Thus for any values of q a transition 5 - 4 - 0 
takes place from point A. 

bl If the integral curve (6.2) for q = 0~) emanating from some point C 
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in w&m 6, intersects y, there exists some value q > 0 SU& that for 
all values q > q* the transition 6 * 5 * 4 -. 0 is re&ized, 

%W q ” 9% a condition of ~m~e~~ab~lity 
in region 6 can be satisfied in accordance 
with f7,4) with u12 c (K - 1)/(3~ + 1) and 
this corresponds to the transition 6 - u_ 
(curve C on Fig, 6, b). 

It is of interest; to observe that, when 
q - 0, a solution to the boundary value 
problem exists when the representative point 
i~ediatel~ behind the shock wave lies on 
the u-axis. Ihis solution corres~~ds to 
the “strong shock” usual in the normal 
hyd~od~~i~s (Section ?I. 

c> If the integral curve (6.2) when q=~, 
in coming from some point V in region 5 

(Fig. 8), intersects line Pz and goes over 
inta region 2, a~id~*tly a limiting lim will appear in the solution; the 
in&graf curve will intersect b. Let us examine in this case how the solu- 
tion is altered when we gradually increase q from zero. When Q is small 
the transition 5 -* 4 -, 0 takes place. Then for any value of q the straight 
line y “overtakes” the representative point on line Pz. Further increase 
in q results in an inte~s~ti~ between t;he integral curve and the line 
y which lies at the boundary of regions 2 and 3, and it moves do~~ards 
&wards the u-axis. When this happens the transition 5 * 2 * 3 - 4 - 0 
takes place until finally, when q = q,, solution 5 - 2 * U+ is no Ioqer 
pssikh %en q 
(Section 71. 

ZZ- 9, there is no solludan to the ~~~a~ valrre problem 

d) When V. lies at the boundary of region 5 on the lower edge of the 
cut y the foilowing cases may exist: 

(Xl dvfdrt det~~i~~ by the c~di~io~~ behind the shock wave are 
greater than Ry (2.1). ‘&is case is similar to case (a). Evidently a 
transition 5 * 4 -t 0 will always take place. 

(2) ~/~u < ky, h era as in (c) transitions 5 -L 4 * 0 sre possible and 

also 5 - 2-3-4-O. Whanq = m the representative point moves along 

the rawer edge of the cut y in accordance with (6.3) whilst, when o -* 0 

we arrive at Solutiorr (7.6). 

e) If along the integral CUFY~ (6.2) with Q = a ratio from soma 
point E ia region fi (Fig, 81, there takes place a transition 6 * 5 * 2, 
then s limiting line will appear in the dution exactfy BEG in case (b?. 
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In this case over some range 

tions 6 - 5 - 4 * 0 or, (for 
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of variation q(g _ < 7 ( q,+) the transi- 

highvaluesofqj, 6-5*2-3-4-O 
will take place. %en q = q,_ 
this solution 6 - 5 - 2 - u+ will 
exist whilst when q = q,+ sofu- P 

tion will be 6 - 5 * 2 - u+. A 
solution close to the u-axis has 
the form (7.4). Values of u on 
the surface of the wedge for 
these solutions (respectively ul_ 8 
and ul+) satisfy the inequality 

%- ’ < (K - 1)/(3K + 1) < Ur+‘. ’ 
Figure 9 illustrates a sample 
calculation for u = 30*, 8, = 

3 

54O. 5 (no = 1.4) when the repre- 
sentative point on the wave V, Fig. 9. 

lies within region 6. The quanti- 

ties q,_ = 1.35 and q,+ = 4.0 were chosen so that the solution for TJ - 0 

took the form (7.4). 

ff In region 6 there are points (D in Fig. 8) far which for any value 
of q no solution to the boundary value problem exists. 

11. Now fix the angle a and, using the results of Sections 4 to 10 
study the motion V, along the strophoid (Fig. 10s) when 8, varies.Points 

” 

A and D describe the flow 
when q = 0, respectively 
behind a weak and strong 
shock, and they corre- 
spond to the angles a of 
directional change of the 
stream. If the angle of 
inclination of the shock 
wave becomes less than 
@,a, i.e. its nonmagnetic 
value for weak shock, 
representative point 
appears in region 2 
(!Section 91, where no 
lution exists. 

the 

so- Fig. 10. 

At points 3 and C the magnitude of y is zero*. On arc AB the 

* Note that when K > 3 everywhere on the strophoid y < 0, i.e. points 
B and C do not exist. This leads to the position that curve (I (0,) 
is closed for any angle of attack (see below). 

l 
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ma~itude y. < 0, i.e. the representative point, lies in region 2 where 
for any 5, there exists a unique value of q = y7,+ at which OR the SUM- 

face of the body the condition of impermeability is fulfilled for gI+ > 
4 tc K - 1)/63K f I)] (%Ction 7). %en q < q,+ then solution II is ful- 
filled .4t point B the magnitude 'I,+ = ~0 and the solution for n - 0 takes 
the form (7.6). 

On the arc BC, where y > 0 point V. lies in regions 3 or 4. Ilere for 
fixed 8, ad q varying from zero to infinity, solution II is satisfied. 
ff at point C the derivative A/&z > k then with counter-clockwise 
mtion along the strophoid from C poin I E will be met at which the inte- 
gral curve (6.2) for q = @ touches line y. 

For arc GE, the range in variation of q for which the integral curves 
come to the origin of coordinates, is not limited from above. For each 
point on the arc EF (point F is determined below) it is possible to 
point out some point (I = q,+ at which solution I holds, whilst the inte- 
gral curves approach the u-axis from above and the velocity on the sut- 
face of the wedge uI+ > ~T(K - 13/(3~ f l)J.V%en 1 ( q,+ integral curves 
II come to the origin whilst, when q > q,+ there will be no solution to 
the boundary value problem. 

For each point on the arc BF there exists some point Q = q,_ at which 
the integral curves I approach the u-axis from below and the velocity on 
the surface of the wedge is ul_ < \1 t(K - llf(3~ t 111.When q > q*_ inte- 
gral. curves IT approach the origin, whilst when q < q _ the solution to 
the boundary problem does not exist. Thus for points fying in region 6 
on the arc EF, the range of variation in q over which there exists some 
solution to II is determined by the inequalities q,_ < q < p,+. 

When Va moves counter-clockwise the quantities uI_ and ul+ approach 
each other and at the same time 
U1,+ = \1t(K - 

q,_ 

l)/f3K + 113, q _ = 

and q,+ approach until finally ul_ = 
q,+ at point F. Zf V0 lies on a 

strophoid below point F therz will not be any solution to the boundary 
value problem. 

'The character of the relationships between quantities q,+ and Q,_ will 
now be explained. These quantities present solution T in terms of the 
angle of inclination of the shock 5, for various values of a. \&en a = 5 
points A and B coincide in the plane uv with the point n = 1, u = 0. 
nis means that the relationship ~*+~0~~ (the curve passing through A) 
decays into the straight line 6, = 5, Calculation has shown that point 
E is located on the arc DF Khen a = 5. When a = 5 at point D, 5, = n/2 
and because of this for small values of a solutions can be obtained 

(curve passing through point LV, when 0, > T/Z?. Qn Fig. 15, b curves are 

shown in diagram form for q,(ffo) for small values of a. Each point in 
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the region between the two curves q,(8,) corresponds to solution II. Ob- 

serve that the angle of inclination of the tangent to the curve q,+(eO) 

at point A is determined approximately from the first Equation (8.2). 

\\hen a increases the relative location of points (Fig. 10a) changes. 

Points A and D approach each other. Point E moves toward C, goes over to 

the arc CD and at a certain value of a coincides with C (Fig. lob). ‘lhis 

takes place when at point C the derivative dvldu = ky(a = 23O.18 and 

0, = 44O.2 for K = 1.4). 

At high values of a the quantity q = q*(t3a)(the curve passing through 

point D) goes to infinity at point C, and it can be determined by 

analysis of the initial data without any numerical integration of the 

equation. 

Further increase in a brings us to the point when B and C coincide, 

as is shown on Fig. 10, e (a = 28O.15 for K = 1.4). 

Furthermore the curve 9,(0,,) is closed (Fig. 10e). In this case point 

F coincides with D. This takes place when the velocity behind the strong 

shock u,, = d [(K - 1)/(3K + 1)l. ‘Ih e curve q*(8,,) has a vertical tangent 

at point D. ‘Ihen q,(8,) becomes of the form (Fig. lo), and this corre- 

sponds to the case when in region 6 there is no solution. Finally curve 

9*(6,,) is drawn out to a point and this takes place when a becomes equal 

to a0 - the limiting angle of rotation when there is no field (a0 = Xi035 

for K = 1.4). 

Figure 11 shows calculated results for values Q for a = 30’ when 

curve qJ8,) is closed (calculated points shown by*circles). 

Ii?. It follows from what has been said that the case when a < a’, for 

given values of 9, two solutions I exist of the boundary problem and 

they transform into the nonmagnetic solutions, when the intensity of the 

mametic field tends to zero and there is an infinite number of solu- 

tions II for which the angle of inclination of the shock wave lies with- 

in the interval between the two values obtained from solution I. ‘Ihe 

quantity q, for which there exists a solution with an attached shock 

wave, can change over the interval between zero to infinity for O< a<ax 

and it will be limited from above for ax < a < a0 (ax = 28O.15 for 

K = I..$. When K increases the quantity ax decreases. With K > 3 the 

range within which 9 can be infinitely great is absent). 

N’hen there is a solution (6.2) for q = m, the magnetic field vectors 

and the velocity vectors are parallel over the whole stream, whilst 

pressure and density on the surface of the wedge become zero (7.6) (a 

special type of pinch). As a(a > ax) approaches a0 the range of vari- 

ation of (I where there exists a solution with a connected shock wave 
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decreases, whilst for a - tx” it draws out to zero. 

Although the solution to the boundary value problem turns out to be 
many valued, it is natural to assume 
that at least in free flight a solu- 
tion is realized which transforms 
into the well known solution for flow 
round a wedge with weak shock q - 0, 
This follows from the requirement of 
a continuous relationship in the 
solution and the intensity of the 
magnetic field. For this solution for 
fixed a, as the intensity of the 
magnetic field increases from zero 
the angle of inclination of the shock 
increases from the no~a~etic G,, to 
its limiting value Br, When a < g, 
the value of 0s is obtained for in- 
finitely high field intensity, whilst 

Fig. 11. 

with ax < a < ao, finite intensity is obtained. In the second case there 
is no solution with an attached shock when the field intensity is in- 
creased further, and this demonstrates that it is possible to transform 
at a fairly high value of magnetic field from flow with attached shock 
to flows with detached shock. 
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